
Copyright Law (Fisher 2014) Oracle v. Google	

ORACLE AMERICA, INC. v. GOOGLE INC.

United States Court of Appeals, Federal Circuit.

Decided: May 9, 2014.

16 Before O'MALLEY, PLAGER, and TARANTO, Circuit Judges.

17 O'MALLEY, Circuit Judge.

18 This copyright dispute involves 37 packages of computer source code. The parties have
often referred to these groups of computer programs, individually or collectively, as
"application programming interfaces," or API packages, but it is their content, not their
name, that matters. The predecessor of Oracle America, Inc. ("Oracle") wrote these and
other API packages in the Java programming language, and Oracle licenses them on
various terms for others to use. Many software developers use the Java language, as well
as Oracle's API packages, to write applications (commonly referred to as "apps") for
desktop and laptop computers, tablets, smartphones, and other devices.

19 Oracle filed suit against Google Inc. ("Google") in the United States District Court for
the Northern District of California, alleging that Google's Android mobile operating
system infringed Oracle's patents and copyrights. The jury found no patent
infringement, and the patent claims are not at issue in this appeal. As to the copyright
claims, the parties agreed that the jury would decide infringement, fair use, and whether
any copying was de minimis, while the district judge would decide copyrightability and
Google's equitable defenses. The jury found that Google infringed Oracle's copyrights
in the 37 Java packages and a specific computer routine called "rangeCheck," but
returned a noninfringement verdict as to eight decompiled security files. The jury
deadlocked on Google's fair use defense.

20 After the jury verdict, the district court denied Oracle's motion for judgment as a matter
of law ("JMOL") regarding fair use as well as Google's motion for JMOL with respect
to the rangeCheck files. [...] Oracle also moved for JMOL of infringement with respect
to the eight decompiled security files. In granting that motion, the court found that: (1)
Google admitted to copying the eight files; and (2) no reasonable jury could find that
the copying was de minimis. [...]

21 Shortly thereafter, the district court issued its decision on copyrightability, finding that
the replicated elements of the 37 API packages—including the declaring code and the
structure, sequence, and organization—were not subject to copyright protection. [...]
Accordingly, the district court entered final judgment in favor of Google on Oracle's
copyright infringement claims, except with respect to the rangeCheck code and the
eight decompiled files. [...] Oracle appeals from the portion of the final judgment
entered against it, and Google cross-appeals from the portion of that same judgment
entered in favor of Oracle as to the rangeCheck code and eight decompiled files.

22 Because we conclude that the declaring code and the structure, sequence, and
organization of the API packages are entitled to copyright protection, we reverse the
district court's copyrightability determination with instructions to reinstate the jury's

Copyright Law (Fisher 2014) Oracle v. Google	

infringement finding as to the 37 Java packages. Because the jury deadlocked on fair use,
we remand for further consideration of Google's fair use defense in light of this
decision. With respect to Google's cross-appeal, we affirm the district court's decisions:
(1) granting Oracle's motion for JMOL as to the eight decompiled Java files that Google
copied into Android; and (2) denying Google's motion for JMOL with respect to the
rangeCheck function. Accordingly, we affirm-in-part, reverse-in-part, and remand for
further proceedings.

BACKGROUND

A. The Technology

25 Sun Microsystems, Inc. ("Sun") developed the Java "platform" for computer
programming and released it in 1996.[1] The aim was to relieve programmers from the
burden of writing different versions of their computer programs for different operating
systems or devices. "The Java platform, through the use of a virtual machine, enable[d]
software developers to write programs that [we]re able to run on different types of
computer hardware without having to rewrite them for each different type." [...] With
Java, a software programmer could "write once, run anywhere."

26 The Java virtual machine ("JVM") plays a central role in the overall Java platform. The
Java programming language itself—which includes words, symbols, and other units,
together with syntax rules for using them to create instructions—is the language in
which a Java programmer writes source code, the version of a program that is "in a
human-readable language." [...] For the instructions to be executed, they must be
converted (or compiled) into binary machine code (object code) consisting of 0s and 1s
understandable by the particular computing device. In the Java system, "source code is
first converted into `bytecode,' an intermediate form, before it is then converted into
binary machine code by the Java virtual machine" that has been designed for that device.
[...] The Java platform includes the "Java development kit (JDK), javac compiler, tools
and utilities, runtime programs, class libraries (API packages), and the Java virtual
machine." [...]

27 Sun wrote a number of ready-to-use Java programs to perform common computer
functions and organized those programs into groups it called "packages." These
packages, which are the application programming interfaces at issue in this appeal, allow
programmers to use the prewritten code to build certain functions into their own
programs, rather than write their own code to perform those functions from scratch.
They are shortcuts. Sun called the code for a specific operation (function) a "method."
It defined "classes" so that each class consists of specified methods plus variables and
other elements on which the methods operate. To organize the classes for users, then, it
grouped classes (along with certain related "interfaces") into "packages." [...] The parties
have not disputed the district court's analogy: Oracle's collection of API packages is like
a library, each package is like a bookshelf in the library, each class is like a book on the
shelf, and each method is like a how-to chapter in a book. [...]

28 The original Java Standard Edition Platform ("Java SE") included "eight packages of
pre-written programs." [...] The district court found, and Oracle concedes to some
extent, that three of those packages—java.lang, java.io, and java.util—were "core"

Copyright Law (Fisher 2014) Oracle v. Google	

packages, meaning that programmers using the Java language had to use them "in order
to make any worthwhile use of the language." [...] By 2008, the Java platform had more
than 6,000 methods making up more than 600 classes grouped into 166 API packages.
There are 37 Java API packages at issue in this appeal, three of which are the core
packages identified by the district court.[2] These packages contain thousands of
individual elements, including classes, subclasses, methods, and interfaces.

29 Every package consists of two types of source code— what the parties call (1)declaring
code; and (2) implementing code. Declaring code is the expression that identifies the
prewritten function and is sometimes referred to as the "declaration" or "header." As
the district court explained, the "main point is that this header line of code introduces
the method body and specifies very precisely the inputs, name and other functionality."
[...] The expressions used by the programmer from the declaring code command the
computer to execute the associated implementing code, which gives the computer the
step-by-step instructions for carrying out the declared function.

30 To use the district court's example, one of the Java API packages at issue is "java.lang."
Within that package is a class called "math," and within "math" there are several
methods, including one that is designed to find the larger of two numbers: "max." The
declaration for the "max" method, as defined for integers, is: "public static int max(int x,
int y)," where the word "public" means that the method is generally accessible, "static"
means that no specific instance of the class is needed to call the method, the first "int"
indicates that the method returns an integer, and "int x" and "int y" are the two
numbers (inputs) being compared. [...] A programmer calls the "max" method by typing
the name of the method stated in the declaring code and providing unique inputs for
the variables "x" and "y." The expressions used command the computer to execute the
implementing code that carries out the operation of returning the larger number.

31 Although Oracle owns the copyright on Java SE and the API packages, it offers three
different licenses to those who want to make use of them. The first is the General
Public License, which is free of charge and provides that the licensee can use the
packages—both the declaring and implementing code—but must "contribute back" its
innovations to the public. This arrangement is referred to as an "open source" license.
The second option is the Specification License, which provides that the licensee can use
the declaring code and organization of Oracle's API packages but must write its own
implementing code. The third option is the Commercial License, which is for businesses
that "want to use and customize the full Java code in their commercial products and
keep their code secret." [...] Oracle offers the Commercial License in exchange for
royalties. To maintain Java's "write once, run anywhere" motto, the Specification and
Commercial Licenses require that the licensees' programs pass certain tests to ensure
compatibility with the Java platform.

32 The testimony at trial also revealed that Sun was licensing a derivative version of the Java
platform for use on mobile devices: the Java Micro Edition ("Java ME"). Oracle
licensed Java ME for use on feature phones and smartphones. Sun/Oracle has never
successfully developed its own smartphone platform using Java.

Copyright Law (Fisher 2014) Oracle v. Google	

B. Google's Accused Product: Android

34 The accused product is Android, a software platform that was designed for mobile
devices and competes with Java in that market. Google acquired Android, Inc. in 2005
as part of a plan to develop a smartphone platform. Later that same year, Google and
Sun began discussing the possibility of Google "taking a license to use and to adapt the
entire Java platform for mobile devices." [...] They also discussed a "possible co-
development partnership deal with Sun under which Java technology would become an
open-source part of the Android platform, adapted for mobile devices." [...] The parties
negotiated for months but were unable to reach an agreement. The point of contention
between the parties was Google's refusal to make the implementation of its programs
compatible with the Java virtual machine or interoperable with other Java programs.
Because Sun/Oracle found that position to be anathema to the "write once, run
anywhere" philosophy, it did not grant Google a license to use the Java API packages.

35 When the parties' negotiations reached an impasse, Google decided to use the Java
programming language to design its own virtual machine—the Dalvik virtual machine
("Dalvik VM")—and "to write its own implementations for the functions in the Java
API that were key to mobile devices." [...] Google developed the Android platform,
which grew to include 168 API packages—37 of which correspond to the Java API
packages at issue in this appeal.

36 With respect to the 37 packages at issue, "Google believed Java application programmers
would want to find the same 37 sets of functionalities in the new Android system
callable by the same names as used in Java." [...] To achieve this result, Google copied
the declaring source code from the 37 Java API packages verbatim, inserting that code
into parts of its Android software. In doing so, Google copied the elaborately organized
taxonomy of all the names of methods, classes, interfaces, and packages— the "overall
system of organized names—covering 37 packages, with over six hundred classes, with
over six thousand methods." [...] The parties and district court referred to this
taxonomy of expressions as the "structure, sequence, and organization" or "SSO" of the
37 packages. It is undisputed, however, that Google wrote its own implementing code,
except with respect to: (1) the rangeCheck function, which consisted of nine lines of
code; and (2) eight decompiled security files.

37 As to rangeCheck, the court found that the Sun engineer who wrote it later worked for
Google and contributed two files he created containing the rangeCheck function—
"Timsort.java" and "ComparableTimsort"—to the Android platform. In doing so, the
nine-line rangeCheck function was copied directly into Android. As to the eight
decompiled files, the district court found that they were copied and used as test files but
"never found their way into Android or any handset." [...]

38 Google released the Android platform in 2007, and the first Android phones went on
sale the following year. Although it is undisputed that certain Android software contains
copies of the 37 API packages' declaring code at issue, neither the district court nor the
parties specify in which programs those copies appear. Oracle indicated at oral
argument, however, that all Android phones contain copies of the accused portions of
the Android software. [...] Android smartphones "rapidly grew in popularity and now

Copyright Law (Fisher 2014) Oracle v. Google	

comprise a large share of the United States market." [...] Google provides the Android
platform free of charge to smartphone manufacturers and receives revenue when
customers use particular functions on the Android phone. Although Android uses the
Java programming language, it is undisputed that Android is not generally Java
compatible. As Oracle explains, "Google ultimately designed Android to be incompatible
with the Java platform, so that apps written for one will not work on the other." [...]

DISCUSSION

I. ORACLE'S APPEAL

49 It is undisputed that the Java programming language is open and free for anyone to use.
Except to the limited extent noted below regarding three of the API packages, it is also
undisputed that Google could have written its own API packages using the Java
language. Google chose not to do that. Instead, it is undisputed that Google copied
7,000 lines of declaring code and generally replicated the overall structure, sequence, and
organization of Oracle's 37 Java API packages. The central question before us is
whether these elements of the Java platform are entitled to copyright protection. The
district court concluded that they are not, and Oracle challenges that determination on
appeal. Oracle also argues that the district court should have dismissed Google's fair use
defense as a matter of law.

50 According to Google, however, the district court correctly determined that: (1) there was
only one way to write the Java method declarations and remain "interoperable" with
Java; and (2) the organization and structure of the 37 Java API packages is a "command
structure" excluded from copyright protection under Section 102(b). Google also argues
that, if we reverse the district court's copyrightability determination, we should direct
the district court to retry its fair use defense.

51 "When the questions on appeal involve law and precedent on subjects not exclusively
assigned to the Federal Circuit, the court applies the law which would be applied by the
regional circuit." [...] Copyright issues are not exclusively assigned to the Federal Circuit.
[...] The parties agree that Ninth Circuit law applies and that, in the Ninth Circuit,
whether particular expression is protected by copyright law is "subject to de novo
review." [...][3]

52 We are mindful that the application of copyright law in the computer context is often a
difficult task. [...] On this record, however, we find that the district court failed to
distinguish between the threshold question of what is copyrightable— which presents a
low bar—and the scope of conduct that constitutes infringing activity. The court also
erred by importing fair use principles, including interoperability concerns, into its
copyrightability analysis.

53 For the reasons that follow, we conclude that the declaring code and the structure,
sequence, and organization of the 37 Java API packages are entitled to copyright
protection. Because there is an insufficient record as to the relevant fair use factors, we
remand for further proceedings on Google's fair use defense.

Copyright Law (Fisher 2014) Oracle v. Google	

A. Copyrightability

55 The Copyright Act provides protection to "original works of authorship fixed in any
tangible medium of expression," including "literary works." 17 U.S.C. § 102(a). It is
undisputed that computer programs— defined in the Copyright Act as "a set of
statements or instructions to be used directly or indirectly in a computer in order to
bring about a certain result," 17 U.S.C. § 101—can be subject to copyright protection as
"literary works." See Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 838 (Fed.
Cir. 1992) ("As literary works, copyright protection extends to computer programs.").
Indeed, the legislative history explains that "literary works" includes "computer
programs to the extent that they incorporate authorship in the programmer's expression
of original ideas, as distinguished from the ideas themselves." [...]

56 By statute, a work must be "original" to qualify for copyright protection. 17 U.S.C. §
102(a). This "originality requirement is not particularly stringent," however. Feist Publ'ns,
Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 358 (1991). "Original, as the term is used in
copyright, means only that the work was independently created by the author (as
opposed to copied from other works), and that it possesses at least some minimal
degree of creativity." [...]

57 Copyright protection extends only to the expression of an idea—not to the underlying
idea itself. [...] This distinction—commonly referred to as the "idea/expression
dichotomy"—is codified in Section 102(b) of the Copyright Act, which provides:

58 In no case does copyright protection for an original work of authorship extend to any
idea, procedure, process, system, method of operation, concept, principle, or discovery,
regardless of the form in which it is described, explained, illustrated, or embodied in
such work.[...]

60 The idea/expression dichotomy traces back to the Supreme Court's decision in Baker v.
Selden, 101 U.S. 99, 101 (1879). [...]

62 Courts routinely cite Baker as the source of several principles incorporated into Section
102(b) that relate to this appeal, including that: (1) copyright protection extends only to
expression, not to ideas, systems, or processes; and (2) "those elements of a computer
program that are necessarily incidental to its function are . . . unprotectable." See
Computer Assocs. Int'l v. Altai, 982 F.2d 693, 704-05 (2d Cir. 1992) ("Altai") (discussing
Baker, 101 U.S. at 103-04).

63 It is well established that copyright protection can extend to both literal and non-literal
elements of a computer program. [...] The literal elements of a computer program are
the source code and object code. [...] Courts have defined source code as "the spelled-
out program commands that humans can read." [...] Object code refers to "the binary
language comprised of zeros and ones through which the computer directly receives its
instructions." [...] Both source and object code "are consistently held protected by a
copyright on the program." [...] Google nowhere disputes that premise. [...]

64 The non-literal components of a computer program include, among other things, the

Copyright Law (Fisher 2014) Oracle v. Google	

program's sequence, structure, and organization, as well as the program's user interface.
[...] As discussed below, whether the non-literal elements of a program "are protected
depends on whether, on the particular facts of each case, the component in question
qualifies as an expression of an idea, or an idea itself." [...]

65 In this case, Oracle claims copyright protection with respect to both: (1) literal elements
of its API packages— the 7,000 lines of declaring source code; and (2) non-literal
elements—the structure, sequence, and organization of each of the 37 Java API
packages.

66 The distinction between literal and non-literal aspects of a computer program is separate
from the distinction between literal and non-literal copying. [...] "Literal" copying is
verbatim copying of original expression. "Non-literal" copying is "paraphrased or
loosely paraphrased rather than word for word." Lotus Dev. Corp. v. Borland Int'l, 49 F.3d
807, 814 (1st Cir. 1995). Here, Google concedes that it copied the declaring code
verbatim. Oracle explains that the lines of declaring code "embody the structure of each
[API] package, just as the chapter titles and topic sentences represent the structure of a
novel." [...] As Oracle explains, when Google copied the declaring code in these
packages "it also copied the `sequence and organization' of the packages (i.e., the three-
dimensional structure with all the chutes and ladders)" employed by Sun/Oracle in the
packages. [...] Oracle also argues that the nonliteral elements of the API packages—the
structure, sequence, and organization that led naturally to the implementing code
Google created—are entitled to protection. Oracle does not assert "literal" copying of
the entire SSO, but, rather, that Google literally copied the declaring code and then
paraphrased the remainder of the SSO by writing its own implementing code. It
therefore asserts non-literal copying with respect to the entirety of the SSO.

67 At this stage, it is undisputed that the declaring code and the structure and organization
of the Java API packages are original. The testimony at trial revealed that designing the
Java API packages was a creative process and that the Sun/Oracle developers had a vast
range of options for the structure and organization. In its copyrightability decision, the
district court specifically found that the API packages are both creative and original, and
Google concedes on appeal that the originality requirements are met. [...] The court
found, however, that neither the declaring code nor the SSO was entitled to copyright
protection under the Copyright Act.

68 Although the parties agree that Oracle's API packages meet the originality requirement
under Section 102(a), they disagree as to the proper interpretation and application of
Section 102(b). For its part, Google suggests that there is a two-step copyrightability
analysis, wherein Section 102(a) grants copyright protection to original works, while
Section 102(b) takes it away if the work has a functional component. To the contrary,
however, Congress emphasized that Section 102(b) "in no way enlarges or contracts the
scope of copyright protection" and that its "purpose is to restate . . . that the basic
dichotomy between expression and idea remains unchanged." Feist, 499 U.S. at 356 [...].
"Section 102(b) does not extinguish the protection accorded a particular expression of
an idea merely because that expression is embodied in a method of operation." [...]
Section 102(a) and 102(b) are to be considered collectively so that certain expressions
are subject to greater scrutiny. [...] In assessing copyrightability, the district court is

Copyright Law (Fisher 2014) Oracle v. Google	

required to ferret out apparent expressive aspects of a work and then separate
protectable expression from "unprotectable ideas, facts, processes, and methods of
operation." [...]

69 Of course, as with many things, in defining this task, the devil is in the details. Circuit
courts have struggled with, and disagree over, the tests to be employed when attempting
to draw the line between what is protectable expression and what is not. Compare Whelan
Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1236 (3d Cir. 1986) (everything not
necessary to the purpose or function of a work is expression), with Lotus, 49 F.3d at 815
(methods of operation are means by which a user operates something and any words
used to effectuate that operation are unprotected expression). When assessing whether
the non-literal elements of a computer program constitute protectable expression, the
Ninth Circuit has endorsed an "abstraction-filtration-comparison" test formulated by
the Second Circuit and expressly adopted by several other circuits. [...] This test rejects
the notion that anything that performs a function is necessarily uncopyrightable. [...]
And it also rejects as flawed the Whelan assumption that, once any separable idea can be
identified in a computer program everything else must be protectable expression, on
grounds that more than one idea may be embodied in any particular program. Altai, 982
F.2d at 705-06.

70 Thus, this test eschews bright line approaches and requires a more nuanced assessment
of the particular program at issue in order to determine what expression is protectable
and infringed. As the Second Circuit explains, this test has three steps. In the
abstraction step, the court "first break[s] down the allegedly infringed program into its
constituent structural parts." [...] In the filtration step, the court "sift[s] out all non-
protectable material," including ideas and "expression that is necessarily incidental to
those ideas." Id. In the final step, the court compares the remaining creative expression
with the allegedly infringing program.[4]

71 In the second step, the court is first to assess whether the expression is original to the
programmer or author. [...] The court must then determine whether the particular
inclusion of any level of abstraction is dictated by considerations of efficiency, required
by factors already external to the program itself, or taken from the public domain—all
of which would render the expression unprotectable. [...] These conclusions are to be
informed by traditional copyright principles of originality, merger, and scenes a faire. [...]

72 In all circuits, it is clear that the first step is part of the copyrightability analysis and that
the third is an infringement question. It is at the second step of this analysis where the
circuits are in less accord. Some treat all aspects of this second step as part of the
copyrightability analysis, while others divide questions of originality from the other
inquiries, treating the former as a question of copyrightability and the latter as part of
the infringement inquiry. [...] We need not assess the wisdom of these respective views
because there is no doubt on which side of this circuit split the Ninth Circuit falls.

73 In the Ninth Circuit, while questions regarding originality are considered questions of
copyrightability, concepts of merger and scenes a faire are affirmative defenses to claims
of infringement. [...] The Ninth Circuit has acknowledged that "there is some
disagreement among courts as to whether these two doctrines figure into the issue of

Copyright Law (Fisher 2014) Oracle v. Google	

copyrightability or are more properly defenses to infringement." [...] It, nonetheless, has
made clear that, in that circuit, these concepts are to be treated as defenses to
infringement. [...]

74 With these principles in mind, we turn to the trial court's analysis and judgment and to
Oracle's objections thereto. While the trial court mentioned the abstractionfiltration-
comparison test when describing the development of relevant law, it did not purport to
actually apply that test. Instead, it moved directly to application of familiar principles of
copyright law when assessing the copyrightability of the declaring code and interpreted
Section 102(b) to preclude copyrightability for any functional element "essential for
interoperability" "regardless of its form." [...]

75 Oracle asserts that all of the trial court's conclusions regarding copyrightability are
erroneous. Oracle argues that its Java API packages are entitled to protection under the
Copyright Act because they are expressive and could have been written and organized
in any number of ways to achieve the same functions. Specifically, Oracle argues that
the district court erred when it: (1) concluded that each line of declaring code is
uncopyrightable because the idea and expression have merged; (2) found the declaring
code uncopyrightable because it employs short phrases; (3) found all aspects of the SSO
devoid of protection as a "method of operation" under 17 U.S.C. § 102(b); and (4)
invoked Google's "interoperability" concerns in the copyrightability analysis. For the
reasons explained below, we agree with Oracle on each point.

1. Declaring Source Code

77 First, Oracle argues that the district court erred in concluding that each line of declaring
source code is completely unprotected under the merger and short phrases doctrines.
Google responds that Oracle waived its right to assert copyrightability based on the
7,000 lines of declaring code by failing "to object to instructions and a verdict form that
effectively eliminated that theory from the case." Appellee Br. 67. Even if not waived,
moreover, Google argues that, because there is only one way to write the names and
declarations, the merger doctrine bars copyright protection.

78 We find that Oracle did not waive arguments based on Google's literal copying of the
declaring code. [...]

80 That the district court addressed the declaring code in its post-jury verdict
copyrightability decision further confirms that the verbatim copying of declaring code
remained in the case. The court explained that the "identical lines" that Google copied
into Android "are those lines that specify the names, parameters and functionality of the
methods and classes, lines called `declarations' or `headers.'" [...] The court specifically
found that the declaring code was not entitled to copyright protection under the merger
and short phrases doctrines. We address each in turn.

a. Merger

82 The merger doctrine functions as an exception to the idea/expression dichotomy. It
provides that, when there are a limited number of ways to express an idea, the idea is

Copyright Law (Fisher 2014) Oracle v. Google	

said to "merge" with its expression, and the expression becomes unprotected. [...] As
noted, the Ninth Circuit treats this concept as an affirmative defense to infringement.
[...] Accordingly, it appears that the district court's merger analysis is irrelevant to the
question of whether Oracle's API packages are copyrightable in the first instance.
Regardless of when the analysis occurs, we conclude that merger does not apply on the
record before us.

83 Under the merger doctrine, a court will not protect a copyrighted work from
infringement if the idea contained therein can be expressed in only one way. [...] For
computer programs, "this means that when specific [parts of the code], even though
previously copyrighted, are the only and essential means of accomplishing a given task,
their later use by another will not amount to infringement." Altai, 982 F.2d at 708[...].
We have recognized, however, applying Ninth Circuit law, that the "unique arrangement
of computer program expression . . . does not merge with the process so long as
alternate expressions are available." [...]

85 Here, the district court found that, "no matter how creative or imaginative a Java
method specification may be, the entire world is entitled to use the same method
specification (inputs, outputs, parameters) so long as the line-by-line implementations
are different." [...] In its analysis, the court identified the method declaration as the idea
and found that the implementation is the expression. [...] The court explained that,
under the rules of Java, a programmer must use the identical "declaration or method
header lines" to "declare a method specifying the same functionality." [...]Because the
district court found that there was only one way to write the declaring code for each of
the Java packages, it concluded that "the merger doctrine bars anyone from claiming
exclusive copyright ownership" of it. [...] Accordingly, the court held there could be "no
copyright violation in using the identical declarations." [...]

86 Google agrees with the district court that the implementing code is the expression
entitled to protection—not the declaring code. Indeed, at oral argument, counsel for
Google explained that, "it is not our position that none of Java is copyrightable.
Obviously, Google spent two and a half years . . . to write from scratch all of the
implementing code." [...][5] Because it is undisputed that Google wrote its own
implementing code, the copyrightability of the precise language of that code is not at
issue on appeal. Instead, our focus is on the declaring code and structure of the API
packages.

87 On appeal, Oracle argues that the district court: (1) misapplied the merger doctrine; and
(2) failed to focus its analysis on the options available to the original author. We agree
with Oracle on both points. First, we agree that merger cannot bar copyright protection
for any lines of declaring source code unless Sun/Oracle had only one way, or a limited
number of ways, to write them. [...] The evidence showed that Oracle had "unlimited
options as to the selection and arrangement of the 7000 lines Google copied." [...] Using
the district court's "java.lang.Math.max" example, Oracle explains that the developers
could have called it any number of things, including "Math.maximum" or "Arith.larger."
This was not a situation where Oracle was selecting among preordained names and
phrases to create its packages.[6] As the district court recognized, moreover, "the
Android method and class names could have been different from the names of their

Copyright Law (Fisher 2014) Oracle v. Google	

counterparts in Java and still have worked." [...] Because "alternative expressions [we]re
available," there is no merger. [...]

88 We further find that the district court erred in focusing its merger analysis on the options
available to Google at the time of copying. It is well-established that copyrightability and
the scope of protectable activity are to be evaluated at the time of creation, not at the
time of infringement. [...] The focus is, therefore, on the options that were available to
Sun/Oracle at the time it created the API packages. Of course, once Sun/Oracle
created "java.lang.Math.max," programmers who want to use that particular package
have to call it by that name. But, as the court acknowledged, nothing prevented Google
from writing its own declaring code, along with its own implementing code, to achieve
the same result. In such circumstances, the chosen expression simply does not merge
with the idea being expressed.[7]

89 It seems possible that the merger doctrine, when properly analyzed, would exclude the
three packages identified by the district court as core packages from the scope of
actionable infringing conduct. This would be so if the Java authors, at the time these
packages were created, had only a limited number of ways to express the methods and
classes therein if they wanted to write in the Java language. In that instance, the idea
may well be merged with the expression in these three packages.[8] Google did not
present its merger argument in this way below and does not do so here, however.
Indeed, Google does not try to differentiate among the packages for purposes of its
copyrightability analysis and does not appeal the infringement verdict as to the packages.
For these reasons, we reject the trial court's merger analysis.

b. Short Phrases

91 The district court also found that Oracle's declaring code consists of uncopyrightable
short phrases. [...]

92 The district court is correct that "[w]ords and short phrases such as names, titles, and
slogans" are not subject to copyright protection. 37 C.F.R. § 202.1(a). The court failed
to recognize, however, that the relevant question for copyrightability purposes is not
whether the work at issue contains short phrases—as literary works often do—but,
rather, whether those phrases are creative. [...]

93 By analogy, the opening of Charles Dickens' A Tale of Two Cities is nothing but a string of
short phrases. Yet no one could contend that this portion of Dickens' work is unworthy
of copyright protection because it can be broken into those shorter constituent
components. The question is not whether a short phrase or series of short phrases can
be extracted from the work, but whether the manner in which they are used or strung
together exhibits creativity.

94 Although the district court apparently focused on individual lines of code, Oracle is not
seeking copyright protection for a specific short phrase or word. Instead, the portion of
declaring code at issue is 7,000 lines, and Google's own "Java guru" conceded that there
can be "creativity and artistry even in a single method declaration." [...] Because Oracle
"exercised creativity in the selection and arrangement" of the method declarations when

Copyright Law (Fisher 2014) Oracle v. Google	

it created the API packages and wrote the relevant declaring code, they contain
protectable expression that is entitled to copyright protection. [...] Accordingly, we
conclude that the district court erred in applying the short phrases doctrine to find the
declaring code not copyrightable.

c. Scenes a Faire

96 The scenes a faire doctrine, which is related to the merger doctrine, operates to bar
certain otherwise creative expression from copyright protection. [...] It provides that
"expressive elements of a work of authorship are not entitled to protection against
infringement if they are standard, stock, or common to a topic, or if they necessarily
follow from a common theme or setting." [...] Under this doctrine, "when certain
commonplace expressions are indispensable and naturally associated with the treatment
of a given idea, those expressions are treated like ideas and therefore [are] not protected
by copyright." [...] In the computer context, "the scene a faire doctrine denies protection
to program elements that are dictated by external factors such as `the mechanical
specifications of the computer on which a particular program is intended to run' or
`widely accepted programming practices within the computer industry.'" [...]

97 The trial court rejected Google's reliance on the scenes a faire doctrine. It did so in a
footnote, finding that Google had failed to present evidence to support the claim that
either the grouping of methods within the classes or the code chosen for them "would
be so expected and customary as to be permissible under the scenes a faire doctrine."
[...] Specifically, the trial court found that "it is impossible to say on this record that all
of the classes and their contents are typical of such classes and, on this record, this
order rejects Google's global argument based on scenes a faire." [...]

98 On appeal, Google refers to scenes a faire concepts briefly, as do some amici, apparently
contending that, because programmers have become accustomed to and comfortable
using the groupings in the Java API packages, those groupings are so commonplace as
to be indispensable to the expression of an acceptable programming platform. As such,
the argument goes, they are so associated with the "idea" of what the packages are
accomplishing that they should be treated as ideas rather than expression. S[...]

99 Google cannot rely on the scenes a faire doctrine as an alternative ground upon which
we might affirm the copyrightability judgment of the district court. This is so for several
reasons. First, as noted, like merger, in the Ninth Circuit, the scenes a faire doctrine is a
component of the infringement analysis. "[S]imilarity of expression, whether literal or
non-literal, which necessarily results from the fact that the common idea is only capable
of expression in more or less stereotyped form, will preclude a finding of actionable
similarity." 4 Nimmer on Copyright § 13.03[B][3]. Thus, the expression is not excluded
from copyright protection; it is just that certain copying is forgiven as a necessary
incident of any expression of the underlying idea. [...]

100 Second, Google has not objected to the trial court's conclusion that Google failed to
make a sufficient factual record to support its contention that the groupings and code
chosen for the 37 Java API packages were driven by external factors or premised on
features that were either commonplace or essential to the idea being expressed. [...]

Copyright Law (Fisher 2014) Oracle v. Google	

101 Finally, Google's reliance on the doctrine below and the amici reference to it here are
premised on a fundamental misunderstanding of the doctrine. Like merger, the focus of
the scenes a faire doctrine is on the circumstances presented to the creator, not the
copier. [...] The court's analytical focus must be upon the external factors that dictated
Sun's selection of classes, methods, and code—not upon what Google encountered at
the time it chose to copy those groupings and that code. [...] It is this showing the trial
court found Google failed to make, and Google cites to nothing in the record which
indicates otherwise.

102 For these reasons, the trial court was correct to conclude that the scenes a faire doctrine
does not affect the copyrightability of either the declaring code in, or the SSO of, the
Java API packages at issue.

2. The Structure, Sequence, and Organization of the API Packages

104 The district court found that the SSO of the Java API packages is creative and original,
but nevertheless held that it is a "system or method of operation . . . and, therefore,
cannot be copyrighted" under 17 U.S.C. § 102(b). [...] In reaching this conclusion, the
district court seems to have relied upon language contained in a First Circuit decision:
Lotus Development Corp. v. Borland International, Inc., 49 F.3d 807 (1st Cir. 1995), aff'd without
opinion by equally divided court, 516 U.S. 233 (1996).[9]

105 In Lotus, it was undisputed that the defendant copied the menu command hierarchy and
interface from Lotus 1-2-3, a computer spreadsheet program "that enables users to
perform accounting functions electronically on a computer." [...] The menu command
hierarchy referred to a series of commands—such as "Copy," "Print," and "Quit"—
which were arranged into more than 50 menus and submenus. [...] Although the
defendant did not copy any Lotus source code, it copied the menu command hierarchy
into its rival program. The question before the court was "whether a computer menu
command hierarchy is copyrightable subject matter." [...]

106 Although it accepted the district court's finding that Lotus developers made some
expressive choices in selecting and arranging the command terms, the First Circuit
found that the command hierarchy was not copyrightable because, among other things,
it was a "method of operation" under Section 102(b). [...]

107 On appeal, Oracle argues that the district court's reliance on Lotus is misplaced because
it is distinguishable on its facts and is inconsistent with Ninth Circuit law. We agree.
First, while the defendant in Lotus did not copy any of the underlying code, Google
concedes that it copied portions of Oracle's declaring source code verbatim. Second, the
Lotus court found that the commands at issue there (copy, print, etc.) were not creative,
but it is undisputed here that the declaring code and the structure and organization of
the API packages are both creative and original. Finally, while the court in Lotus found
the commands at issue were "essential to operating" the system, it is undisputed that—
other than perhaps as to the three core packages—Google did not need to copy the
structure, sequence, and organization of the Java API packages to write programs in the
Java language.

Copyright Law (Fisher 2014) Oracle v. Google	

108 More importantly, however, the Ninth Circuit has not adopted the court's "method of
operation" reasoning in Lotus, and we conclude that it is inconsistent with binding
precedent.[11] Specifically, we find that Lotus is inconsistent with Ninth Circuit case law
recognizing that the structure, sequence, and organization of a computer program is
eligible for copyright protection where it qualifies as an expression of an idea, rather
than the idea itself. [...] And, while the court in Lotus held "that expression that is part of
a `method of operation' cannot be copyrighted," [...] this court—applying Ninth Circuit
law—reached the exact opposite conclusion, finding that copyright protects "the
expression of [a] process or method," [...]

109 We find, moreover, that the hard and fast rule set down in Lotus and employed by the
district court here— i.e., that elements which perform a function can never be
copyrightable—is at odds with the Ninth Circuit's endorsement of the abstraction-
filtration-comparison analysis discussed earlier. As the Tenth Circuit concluded in
expressly rejecting the Lotus "method of operation" analysis, in favor of the Second
Circuit's abstraction-filtrationcomparison test, "although an element of a work may be
characterized as a method of operation, that element may nevertheless contain
expression that is eligible for copyright protection." [...] Specifically, the court found
that Section 102(b) "does not extinguish the protection accorded a particular expression
of an idea merely because that expression is embodied in a method of operation at a
higher level of abstraction." [...]

110 Other courts agree that components of a program that can be characterized as a
"method of operation" may nevertheless be copyrightable. [...]

112 Here, the district court recognized that the SSO "resembles a taxonomy," but found
that "it is nevertheless a command structure, a system or method of operation—a long
hierarchy of over six thousand commands to carry out pre-assigned functions." [...][12]
In other words, the court concluded that, although the SSO is expressive, it is not
copyrightable because it is also functional. The problem with the district court's
approach is that computer programs are by definition functional—they are all designed
to accomplish some task. Indeed, the statutory definition of "computer program"
acknowledges that they function "to bring about a certain result." [...] If we were to
accept the district court's suggestion that a computer program is uncopyrightable simply
because it "carr[ies] out pre-assigned functions," no computer program is protectable.
That result contradicts Congress's express intent to provide copyright protection to
computer programs, as well as binding Ninth Circuit case law finding computer
programs copyrightable, despite their utilitarian or functional purpose. Though the trial
court did add the caveat that it "does not hold that the structure, sequence and
organization of all computer programs may be stolen," [...] it is hard to see how its
method of operation analysis could lead to any other conclusion.

113 While it does not appear that the Ninth Circuit has addressed the precise issue, we
conclude that a set of commands to instruct a computer to carry out desired operations
may contain expression that is eligible for copyright protection. [...] We agree with
Oracle that, under Ninth Circuit law, an original work—even one that serves a
function—is entitled to copyright protection as long as the author had multiple ways to
express the underlying idea. Section 102(b) does not, as Google seems to suggest,

Copyright Law (Fisher 2014) Oracle v. Google	

automatically deny copyright protection to elements of a computer program that are
functional. Instead, as noted, Section 102(b) codifies the idea/expression dichotomy
and the legislative history confirms that, among other things, Section 102(b) was
"intended to make clear that the expression adopted by the programmer is the
copyrightable element in a computer program." [...] Therefore, even if an element
directs a computer to perform operations, the court must nevertheless determine
whether it contains any separable expression entitled to protection.

114 On appeal, Oracle does not—and concedes that it cannot—claim copyright in the idea
of organizing functions of a computer program or in the "package-class-method"
organizational structure in the abstract. Instead, Oracle claims copyright protection only
in its particular way of naming and organizing each of the 37 Java API packages.[13]
Oracle recognizes, for example, that it "cannot copyright the idea of programs that open
an internet connection," but "it can copyright the precise strings of code used to do so,
at least so long as `other language is available' to achieve the same function." [...] Thus,
Oracle concedes that Google and others could employ the Java language—much like
anyone could employ the English language to write a paragraph without violating the
copyrights of other English language writers. And, that Google may employ the
"package-class-method" structure much like authors can employ the same rules of
grammar chosen by other authors without fear of infringement. What Oracle contends
is that, beyond that point, Google, like any author, is not permitted to employ the
precise phrasing or precise structure chosen by Oracle to flesh out the substance of its
packages—the details and arrangement of the prose.

115 As the district court acknowledged, Google could have structured Android differently
and could have chosen different ways to express and implement the functionality that it
copied.[14] Specifically, the court found that "the very same functionality could have
been offered in Android without duplicating the exact command structure used in Java."
[...] The court further explained that Google could have offered the same functions in
Android by "rearranging the various methods under different groupings among the
various classes and packages." [...] The evidence showed, moreover, that Google
designed many of its own API packages from scratch, and, thus, could have designed its
own corresponding 37 API packages if it wanted to do so.

116 Given the court's findings that the SSO is original and creative, and that the declaring
code could have been written and organized in any number of ways and still have
achieved the same functions, we conclude that Section 102(b) does not bar the packages
from copyright protection just because they also perform functions.

3. Google's Interoperability Arguments are Irrelevant to Copyrightability

118 Oracle also argues that the district court erred in invoking interoperability in its
copyrightability analysis. Specifically, Oracle argues that Google's interoperability
arguments are only relevant, if at all, to fair use—not to the question of whether the
API packages are copyrightable. We agree.

119 In characterizing the SSO of the Java API packages as a "method of operation," the
district court explained that "[d]uplication of the command structure is necessary for

Copyright Law (Fisher 2014) Oracle v. Google	

interoperability." [...] The court found that, "[i]n order for at least some of [the pre-
Android Java] code to run on Android, Google was required to provide the same
java.package.Class.method() command system using the same names with the same
`taxonomy' and with the same functional specifications." [...] And, the court concluded
that "Google replicated what was necessary to achieve a degree of interoperability—but
no more, taking care, as said before, to provide its own implementations." [...] In
reaching this conclusion, the court relied primarily on two Ninth Circuit decisions: Sega
Enterprises v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992), and Sony Computer Entertainment,
Inc. v. Connectix, Corp., 203 F.3d 596 (9th Cir. 2000).

120 Both Sega and Sony are fair use cases in which copyrightability was addressed only
tangentially. [...]

122 The district court characterized Sony and Sega as "close analogies" to this case. [...]
According to the court, both decisions "held that interface procedures that were
necessary to duplicate in order to achieve interoperability were functional aspects not
copyrightable under Section 102(b)." [...] The district court's reliance on Sega and Sony in
the copyrightability context is misplaced, however.

123 As noted, both cases were focused on fair use, not copyrightability. [...]

124 We disagree with Google's suggestion that Sony and Sega created an "interoperability
exception" to copyrightability. [...] Although both cases recognized that the software
programs at issue there contained unprotected functional elements, a determination that
some elements are unprotected is not the same as saying that the entire work loses
copyright protection. To accept Google's reading would contradict Ninth Circuit case
law recognizing that both the literal and non-literal components of a software program
are eligible for copyright protection. [...] And it would ignore the fact that the Ninth
Circuit endorsed the abstractionfiltration-comparison inquiry in Sega itself.

125 As previously discussed, a court must examine the software program to determine
whether it contains creative expression that can be separated from the underlying
function. [...] In doing so, the court filters out the elements of the program that are
"ideas" as well as elements that are "dictated by considerations of efficiency, so as to be
necessarily incidental to that idea; required by factors external to the program itself." [...]

126 To determine "whether certain aspects of an allegedly infringed software are not
protected by copyright law, the focus is on external factors that influenced the choice of
the creator of the infringed product." [...] The Second Circuit, for example, has noted
that programmers are often constrained in their design choices by "extrinsic
considerations" including "the mechanical specifications of the computer on which a
particular program is intended to run" and "compatibility requirements of other
programs with which a program is designed to operate in conjunction." Altai, 982 F.2d
at 709-10[...]. The Ninth Circuit has likewise recognized that: (1) computer programs
"contain many logical, structural, and visual display elements that are dictated by . . .
external factors such as compatibility requirements and industry demands"; and (2) "[i]n
some circumstances, even the exact set of commands used by the programmer is
deemed functional rather than creative for purposes of copyright." [...]

Copyright Law (Fisher 2014) Oracle v. Google	

127 Because copyrightability is focused on the choices available to the plaintiff at the time
the computer program was created, the relevant compatibility inquiry asks whether the
plaintiff's choices were dictated by a need to ensure that its program worked with
existing third-party programs. [...] Whether a defendant later seeks to make its program
interoperable with the plaintiff's program has no bearing on whether the software the
plaintiff created had any design limitations dictated by external factors. [...] Stated
differently, the focus is on the compatibility needs and programming choices of the
party claiming copyright protection—not the choices the defendant made to achieve
compatibility with the plaintiff's program. Consistent with this approach, courts have
recognized that, once the plaintiff creates a copyrightable work, a defendant's desire "to
achieve total compatibility. . . is a commercial and competitive objective which does not
enter into the . . . issue of whether particular ideas and expressions have merged." [...]

128 Given this precedent, we conclude that the district court erred in focusing its
interoperability analysis on Google's desires for its Android software. See Copyrightability
Decision, 872 F. Supp. 2d at 1000 ("Google replicated what was necessary to achieve a
degree of interoperability" with Java.). Whether Google's software is "interoperable" in
some sense with any aspect of the Java platform (although as Google concedes,
certainly not with the JVM) has no bearing on the threshold question of whether
Oracle's software is copyrightable. It is the interoperability and other needs of Oracle—
not those of Google—that apply in the copyrightability context, and there is no
evidence that when Oracle created the Java API packages at issue it did so to meet
compatibility requirements of other pre-existing programs.

129 Google maintains on appeal that its use of the "Java class and method names and
declarations was `the only and essential means' of achieving a degree of interoperability
with existing programs written in the [Java language]." [...] Indeed, given the record
evidence that Google designed Android so that it would not be compatible with the Java
platform, or the JVM specifically, we find Google's interoperability argument confusing.
While Google repeatedly cites to the district court's finding that Google had to copy the
packages so that an app written in Java could run on Android, it cites to no evidence in
the record that any such app exists and points to no Java apps that either pre-dated or
post-dated Android that could run on the Android platform.[15] The compatibility
Google sought to foster was not with Oracle's Java platform or with the JVM central to
that platform. Instead, Google wanted to capitalize on the fact that software developers
were already trained and experienced in using the Java API packages at issue. The
district court agreed, finding that, as to the 37 Java API packages, "Google believed Java
application programmers would want to find the same 37 sets of functionalities in the
new Android system callable by the same names as used in Java." [...] Google's interest
was in accelerating its development process by "leverag[ing] Java for its existing base of
developers." [...] Although this competitive objective might be relevant to the fair use
inquiry, we conclude that it is irrelevant to the copyrightability of Oracle's declaring
code and organization of the API packages.

130 Finally, to the extent Google suggests that it was entitled to copy the Java API packages
because they had become the effective industry standard, we are unpersuaded. Google
cites no authority for its suggestion that copyrighted works lose protection when they
become popular, and we have found none.[16] In fact, the Ninth Circuit has rejected

Copyright Law (Fisher 2014) Oracle v. Google	

the argument that a work that later becomes the industry standard is uncopyrightable.
See Practice Mgmt. Info. Corp. v. Am. Med. Ass'n, 121 F.3d 516, 520 n.8 (9th Cir. 1997)
(noting that the district court found plaintiff's medical coding system entitled to
copyright protection, and that, although the system had become the industry standard,
plaintiff's copyright did not prevent competitors "from developing comparative or
better coding systems and lobbying the federal government and private actors to adopt
them. It simply prevents wholesale copying of an existing system."). Google was free to
develop its own API packages and to "lobby" programmers to adopt them. Instead, it
chose to copy Oracle's declaring code and the SSO to capitalize on the preexisting
community of programmers who were accustomed to using the Java API packages.
That desire has nothing to do with copyrightability. For these reasons, we find that
Google's industry standard argument has no bearing on the copyrightability of Oracle's
work.

B. Fair Use

132 As noted, the jury hung on Google's fair use defense, and the district court declined to
order a new trial given its conclusion that the code and structure Google copied were
not entitled to copyright protection. On appeal, Oracle argues that: (1) a remand to
decide fair use "is pointless"; and (2) this court should find, as a matter of law, that
"Google's commercial use of Oracle's work in a market where Oracle already competed
was not fair use." [...]

133 Fair use is an affirmative defense to copyright infringement and is codified in Section
107 of the Copyright Act. [...]

134 "Section 107 requires a case-by-case determination whether a particular use is fair, and
the statute notes four nonexclusive factors to be considered." [...] Those factors are: (1)
"the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes;" (2) "the nature of the copyrighted
work;" (3) "the amount and substantiality of the portion used in relation to the
copyrighted work as a whole;" and (4) "the effect of the use upon the potential market
for or value of the copyrighted work." 17 U.S.C. § 107. The Supreme Court has
explained that all of the statutory factors "are to be explored, and the results weighed
together, in light of the purpose[] of copyright," which is "[t]o promote the Progress of
Science and useful Arts." [...]

135 "Fair use is a mixed question of law and fact." [...] Thus, while subsidiary and
controverted findings of fact must be reviewed for clear error under Rule 52 of the
Federal Rules of Civil Procedure, the Ninth Circuit reviews the ultimate application of
those facts de novo. [...] Where there are no material facts at issue and "the parties
dispute only the ultimate conclusions to be drawn from those facts, we may draw those
conclusions without usurping the function of the jury." [...]

136 Of course, the corollary to this point is true as well— where there are material facts in
dispute and those facts have not yet been resolved by the trier of fact, appellate courts
may not make findings of fact in the first instance. [...] Here, it is undisputed that
neither the jury nor the district court made findings of fact to which we can refer in

Copyright Law (Fisher 2014) Oracle v. Google	

assessing the question of whether Google's use of the API packages at issue was a "fair
use" within the meaning of Section 107. Oracle urges resolution of the fair use question
by arguing that the trial court should have decided the question as a matter of law based
on the undisputed facts developed at trial, and that we can do so as well. Google, on the
other hand, argues that many critical facts regarding fair use are in dispute. It asserts that
the fact that the jury could not reach a resolution on the fair use defense indicates that
at least some presumably reasonable jurors found its use to be fair. And, Google asserts
that, even if it is true that the district court erred in discussing concepts of
"interoperability" when considering copyrightability, those concepts are still relevant to
its fair use defense. We turn first to a more detailed examination of fair use.

137 The first factor in the fair use inquiry involves "the purpose and character of the use,
including whether such use is of a commercial nature or is for nonprofit educational
purposes." 17 U.S.C. § 107(1). This factor involves two sub-issues: (1) "whether and to
what extent the new work is transformative," [...]; and (2) whether the use serves a
commercial purpose.

138 A use is "transformative" if it "adds something new, with a further purpose or different
character, altering the first with new expression, meaning or message." [...] The critical
question is "whether the new work merely supersede[s] the objects of the original
creation . . . or instead adds something new." [...] This inquiry "may be guided by the
examples given in the preamble to § 107, looking to whether the use is for criticism, or
comment, or news reporting, and the like." [...] "The Supreme Court has recognized
that parodic works, like other works that comment and criticize, are by their nature
often sufficiently transformative to fit clearly under the fair use exception." [...]

139 Courts have described new works as "transformative" when "the works use copy-righted
material for purposes distinct from the purpose of the original material." E[...] "A use is
considered transformative only where a defendant changes a plaintiff's copyrighted
work or uses the plaintiff's copyrighted work in a different context such that the
plaintiff's work is transformed into a new creation." Perfect 10, Inc. v. Amazon.com, Inc.,
508 F.3d 1146, 1165 (9th Cir. 2007) [...].

140 A work is not transformative where the user "makes no alteration to the expressive content
or message of the original work." [...] Where the use "is for the same intrinsic purpose as
[the copyright holder's] . . . such use seriously weakens a claimed fair use." [...]

141 Analysis of the first factor also requires inquiry into the commercial nature of the use.
Use of the copyrighted work that is commercial "tends to weigh against a finding of fair
use." [...] "[T]he more transformative the new work, the less will be the significance of
other factors, like commercialism, that may weigh against a finding of fair use." [...]

142 The second factor—the nature of the copyrighted work—"calls for recognition that
some works are closer to the core of intended copyright protection than others, with
the consequence that fair use is more difficult to establish when the former works are
copied." [...] This factor "turns on whether the work is informational or creative." [...]
Creative expression "falls within the core of the copyright's protective purposes." [...]
Because computer programs have both functional and expressive components, however,

Copyright Law (Fisher 2014) Oracle v. Google	

where the functional components are themselves unprotected (because, e.g., they are
dictated by considerations of efficiency or other external factors), those elements should
be afforded "a lower degree of protection than more traditional literary works." [...]
Thus, where the nature of the work is such that purely functional elements exist in the
work and it is necessary to copy the expressive elements in order to perform those
functions, consideration of this second factor arguably supports a finding that the use is
fair.

143 The third factor asks the court to examine "the amount and substantiality of the portion
used in relation to the copyrighted work as a whole." 17 U.S.C. § 107(3). Analysis of this
factor is viewed in the context of the copyrighted work, not the infringing work. Indeed,
the statutory language makes clear that "a taking may not be excused merely because it
is insubstantial with respect to the infringing work." [...] "As Judge Learned Hand
cogently remarked, `no plagiarist can excuse the wrong by showing how much of his
work he did not pirate.'" [...] In contrast, "the fact that a substantial portion of the
infringing work was copied verbatim is evidence of the qualitative value of the copied
material, both to the originator and to the plagiarist who seeks to profit from marketing
someone else's copyrighted expression." [...] The Ninth Circuit has recognized that,
while "wholesale copying does not preclude fair use per se, copying an entire work
militates against a finding of fair use." [...] "If the secondary user only copies as much as
is necessary for his or her intended use, then this factor will not weigh against him or
her." [...] Under this factor, "attention turns to the persuasiveness of a parodist's
justification for the particular copying done, and the enquiry will harken back to the first
of the statutory factors . . . [because] the extent of permissible copying varies with the
purpose and character of the use." [...]

144 The fourth and final factor focuses on "the effect of the use upon the potential market
for or value of the copyrighted work." [...] This factor reflects the idea that fair use "is
limited to copying by others which does not materially impair the marketability of the
work which is copied." [...] The Supreme Court has said that this factor is "undoubtedly
the single most important element of fair use." [...] It requires that courts "consider not
only the extent of market harm caused by the particular actions of the alleged infringer,
but also whether unrestricted and widespread conduct of the sort engaged in by the
defendant. . . would result in a substantially adverse impact on the potential market for
the original." [...] "Market harm is a matter of degree, and the importance of this factor
will vary, not only with the amount of harm, but also with the relative strength of the
showing on the other factors." [...]

145 Oracle asserts that all of these factors support its position that Google's use was not
"fair use"—Google knowingly and illicitly copied a creative work to further its own
commercial purposes, did so verbatim, and did so to the detriment of Oracle's market
position. These undisputable facts, according to Oracle, should end the fair use inquiry.
Oracle's position is not without force. On many of these points, Google does not
debate Oracle's characterization of its conduct, nor could it on the record evidence.

146 Google contends, however, that, although it admittedly copied portions of the API
packages and did so for what were purely commercial purposes, a reasonable juror still
could find that: (1) Google's use was transformative; (2) the Java API packages are

Copyright Law (Fisher 2014) Oracle v. Google	

entitled only to weak protection; (3) Google's use was necessary to work within a
language that had become an industry standard; and (4) the market impact on Oracle
was not substantial.

147 On balance, we find that due respect for the limit of our appellate function requires that
we remand the fair use question for a new trial. First, although it is undisputed that
Google's use of the API packages is commercial, the parties disagree on whether its use
is "transformative." Google argues that it is, because it wrote its own implementing
code, created its own virtual machine, and incorporated the packages into a smartphone
platform. For its part, Oracle maintains that Google's use is not transformative because:
(1) "[t]he same code in Android . . . enables programmers to invoke the same pre-
programmed functions in exactly the same way;" and (2) Google's use of the declaring
code and packages does not serve a different function from Java. [...] While Google
overstates what activities can be deemed transformative under a correct application of
the law, we cannot say that there are no material facts in dispute on the question of
whether Google's use is "transformative," even under a correct reading of the law. As
such, we are unable to resolve this issue on appeal.

148 Next, while we have concluded that it was error for the trial court to focus unduly on the
functional aspects of the packages, and on Google's competitive desire to achieve
commercial "interoperability" when deciding whether Oracle's API packages are entitled
to copyright protection, we expressly noted that these factors may be relevant to a fair
use analysis. While the trial court erred in concluding that these factors were sufficient
to overcome Oracle's threshold claim of copyrightability, reasonable jurors might find
that they are relevant to Google's fair use defense under the second and third factors of
the inquiry. [...] We find this particularly true with respect to those core packages which
it seems may be necessary for anyone to copy if they are to write programs in the Java
language. And, it may be that others of the packages were similarly essential
components of any Java language-based program. So far, that type of filtration analysis
has not occurred.

149 Finally, as to market impact, the district court found that "Sun and Oracle never
successfully developed its own smartphone platform using Java technology." [...] But
Oracle argues that, when Google copied the API packages, Oracle was licensing in the
mobile and smartphone markets, and that Android's release substantially harmed those
commercial opportunities as well as the potential market for a Java smartphone device.
Because there are material facts in dispute on this factor as well, remand is necessary.

150 Ultimately, we conclude that this is not a case in which the record contains sufficient
factual findings upon which we could base a de novo assessment of Google's
affirmative defense of fair use. Accordingly, we remand this question to the district
court for further proceedings. On remand, the district court should revisit and revise its
jury instructions on fair use consistent with this opinion so as to provide the jury with a
clear and appropriate picture of the fair use defense.[17]

Copyright Law (Fisher 2014) Oracle v. Google	

II. GOOGLE'S CROSS-APPEAL

152 Google cross-appeals from the portion of the district court's final judgment entered in
favor of Oracle on its claim for copyright infringement as to the nine lines of
rangeCheck code and the eight decompiled files. [...] Specifically, Google appeals from
the district court's decisions: (1) granting Oracle's motion for JMOL of infringement as
to the eight decompiled Java files that Google copied into Android; and (2) denying
Google's motion for JMOL with respect to rangeCheck.

153 When reviewing a district court's grant or denial of a motion for JMOL, we apply the
procedural law of the relevant regional circuit, here the Ninth Circuit. [...] The Ninth
Circuit reviews a district court's JMOL decision de novo, applying the same standard as
the district court. [...] To grant judgment as a matter of law, the court must find that
"the evidence presented at trial permits only one reasonable conclusion" and that "no
reasonable juror could find in the non-moving party's favor." [...]

154 Oracle explains that the eight decompiled files at issue "contain security functions
governing access to network files" while rangeCheck "facilitates an important sorting
function, frequently called upon during the operation of Java and Android." [...] At trial,
Google conceded that it copied the eight decompiled Java code files and the nine lines
of code referred to as rangeCheck into Android. Its only defense was that the copying
was de minimis. Accordingly, the district court instructed the jury that, "[w]ith respect to
the infringement issues concerning the rangeCheck and other similar files, Google
agrees that the accused lines of code and comments came from the copyrighted
materials but contends that the amounts involved were so negligible as to be de minimis
and thus should be excluded." [...]

155 Although the jury found that Google infringed Oracle's copyright in the nine lines of
code comprising rangeCheck, it returned a noninfringement verdict as to eight
decompiled security files. But because the trial testimony was that Google's use of the
decompiled files was significant—and there was no testimony to the contrary—the
district court concluded that "[n]o reasonable jury could find that this copying was de
minimis." [...] As such, the court granted Oracle's motion for JMOL of infringement as
to the decompiled security files.

156 On appeal, Google maintains that its copying of rangeCheck and the decompiled
security files was de minimis and thus did not infringe any of Oracle's copyrights.
According to Google, the district court should have denied Oracle's motion for JMOL
"because substantial evidence supported the jury's verdict that Google's use of eight
decompiled test files was de minimis." [...]

157 In response, Oracle argues that the Ninth Circuit does not recognize a de minimis
defense to copyright infringement and that, even if it does, we should affirm the
judgments of infringement on grounds that Google's copying was significant. Because
we agree with Oracle on its second point, we need not address the first, except to note
that there is some conflicting Ninth Circuit precedent on the question of whether there
is a free-standing de minimis defense to copyright infringement or whether the
substantiality of the alleged copying is best addressed as part of a fair use defense.

Copyright Law (Fisher 2014) Oracle v. Google	

[...][18]

158 Even assuming that the Ninth Circuit recognizes a stand-alone de minimis defense to
copyright infringement, however, we conclude that: (1) the jury reasonably found that
Google's copying of the rangeCheck files was more than de minimis; and (2) the district
court correctly concluded that the defense failed as a matter of law with respect to the
decompiled security files.

159 First, the unrebutted testimony at trial revealed that rangeCheck and the decompiled
security files were significant to both Oracle and Google. [...]

160 Google emphasizes that the nine lines of rangeCheck code "represented an infinitesimal
percentage of the 2.8 million lines of code in the 166 Java packages—let alone the
millions of lines of code in the entire [Java] platform." [...] To the extent Google is
arguing that a certain minimum number of lines of code must be copied before a court
can find infringement, that argument is without merit. [...] And, given the trial testimony
that both rangeCheck and the decompiled security files are qualitatively significant and
Google copied them in their entirety, Google cannot show that the district court erred
in denying its motion for JMOL.[...]

III. GOOGLE'S POLICY-BASED ARGUMENTS

163 Many of Google's arguments, and those of some amici, appear premised on the belief
that copyright is not the correct legal ground upon which to protect intellectual property
rights to software programs; they opine that patent protection for such programs, with
its insistence on non-obviousness, and shorter terms of protection, might be more
applicable, and sufficient. Indeed, the district court's method of operation analysis
seemed to say as much. [...] Google argues that "[a]fter Sega, developers could no longer
hope to protect [software] interfaces by copyright . . . Sega signaled that the only reliable
means for protecting the functional requirements for achieving interoperability was by
patenting them." [...] And, Google relies heavily on articles written by Professor Pamela
Samuelson, who has argued that "it would be best for a commission of computer
program experts to draft a new form of intellectual property law for machine-readable
programs." [...] Professor Samuelson has more recently argued that "Altai and Sega
contributed to the eventual shift away from claims of copyright in program interfaces
and toward reliance on patent protection. Patent protection also became more plausible
and attractive as the courts became more receptive to software patents." [...]

164 Although Google, and the authority on which it relies, seem to suggest that software is
or should be entitled to protection only under patent law—not copyright law— several
commentators have recently argued the exact opposite. See Technology
Quarterly,Stalking Trolls, ECONOMIST, Mar. 8, 2014, http://www.economist.
com/news/technology-quarterly/21598321-intellectualproperty-after-being-blamed-
stymying-innovation-america-vague ("[M]any innovators have argued that the
electronics and software industries would flourish if companies trying to bring new
technology (software innovations included) to market did not have to worry about
being sued for infringing thousands of absurd patents at every turn. A perfectly
adequate means of protecting and rewarding software developers for their ingenuity has

Copyright Law (Fisher 2014) Oracle v. Google	

existed for over 300 years. It is called copyright."); Timothy B. Lee, Will the Supreme
Court save us from software patents?, WASH. POST, Feb. 26, 2014, 1:13 PM,
http://www.washingtonpost.com/blogs/the-switch/wp/ 2014/02/26/will-the-
supreme-court-save-us-from-softwarepatents/ ("If you write a book or a song, you can
get copyright protection for it. If you invent a new pill or a better mousetrap, you can
get a patent on it. But for the last two decades, software has had the distinction of being
potentially eligible for both copyright and patent protection. Critics say that's a mistake.
They argue that the complex and expensive patent system is a terrible fit for the fast-
moving software industry. And they argue that patent protection is unnecessary because
software innovators already have copyright protection available.").

165 Importantly for our purposes, the Supreme Court has made clear that "[n]either the
Copyright Statute nor any other says that because a thing is patentable it may not be
copyrighted." [...] Indeed, the thrust of the CONTU Report is that copyright is "the
most suitable mode of legal protection for computer software." Peter S. Menell, An
Analysis of the Scope of Copyright Protection for Application Programs, 41 Stan. L. Rev. 1045,
1072 (1989)[...]. Until either the Supreme Court or Congress tells us otherwise, we are
bound to respect the Ninth Circuit's decision to afford software programs protection
under the copyright laws. We thus decline any invitation to declare that protection of
software programs should be the domain of patent law, and only patent law.

CONCLUSION

167 For the foregoing reasons, we conclude that the declaring code and the structure,
sequence, and organization of the 37 Java API packages at issue are entitled to copyright
protection. We therefore reverse the district court's copyrightability determination with
instructions to reinstate the jury's infringement verdict. Because the jury hung on fair
use, we remand Google's fair use defense for further proceedings consistent with this
decision.

168 With respect to Google's cross-appeal, we affirm the district court's decisions: (1)
granting Oracle's motion for JMOL as to the eight decompiled Java files that Google
copied into Android; and (2) denying Google's motion for JMOL with respect to the
rangeCheck function. Accordingly, we affirm-in-part, reverse-in-part, and remand for
further proceedings.

Notes:

173 [4] Importantly, this full analysis only applies where a copyright owner alleges
infringement of the non-literal aspects of its work. Where "admitted literal copying of a
discrete, easily-conceptualized portion of a work" is at issue—as with Oracle's declaring
code—a court "need not perform a complete abstraction-filtration-comparison analysis"
and may focus the protectability analysis on the filtration stage, with attendant reference
to standard copyright principles. [...]

174 [5] It is undisputed that Microsoft and Apple developed mobile operating systems from
scratch, using their own array of software packages. When asked whether Google could
also copy all of Microsoft or Apple's declaring code—codes that obviously differ from

Copyright Law (Fisher 2014) Oracle v. Google	

those at issue here—counsel for Google responded: "Yes, but only the structure,
sequence, and organization. Only the command structure—what you need to access the
functions. You'd have to rewrite all the millions of lines of code in Apple or in
Microsoft which is what Google did in Android." [...]

175 [6] In their brief as amici curiae in support of reversal, Scott McNealy and Brian
Sutphin—both former executives at Sun who were involved in the development of the
Java platform—provide a detailed example of the creative choices involved in designing
a Java package. Looking at the "java.text" package, they explain that it "contains 25
classes, 2 interfaces, and hundreds of methods to handle text, dates, numbers, and
messages in a manner independent of natural human languages. . . ." Br. of McNealy
and Sutphin 14-15. Java's creators had to determine whether to include a java.text
package in the first place, how long the package would be, what elements to include,
how to organize that package, and how it would relate to other packages. Id. at 16. This
description of Sun's creative process is consistent with the evidence presented at trial.
See Appellant Br. 12-13 (citing testimony that it took years to write some of the Java
packages and that Sun/Oracle developers had to "wrestle with what functions to
include in the package, which to put in other packages, and which to omit entirely").[...]

183 [14] Amici McNealy and Sutphin explain that "a quick examination of other
programming environments shows that creators of other development platforms
provide the same functions with wholly different creative choices." Br. of McNealy and
Sutphin 17. For example, in Java, a developer setting the time zone would call the
"setTime-Zone" method within the "DateFormat" class of the java.text package. Id.
Apple's iOS platform, on the other hand, "devotes an entire class to set the time zone in
an application—the `NSTimeZone' class" which is in the "Foundation framework." Id.
at 17-18 (noting that a "framework is Apple's terminology for a structure conceptually
similar to Java's `package'"). Microsoft provides similar functionality with "an entirely
different structure, naming scheme, and selection." Id. at 18 ("In its Windows Phone
development platform, Microsoft stores its time zone programs in the `TimeZoneInfo'
class in its `Systems' namespace (Microsoft's version of a `package' or `framework').").
Again, this is consistent with the evidence presented at trial.[...]

185 [16] Google argues that, in the same way a formerly distinctive trademark can become
generic over time, a program element can lose copyright protection when it becomes an
industry standard. But "it is to be expected that phrases and other fragments of
expression in a highly successful copyrighted work will become part of the language.
That does not mean they lose all protection in the manner of a trade name that has
become generic." [...] Notably, even when a patented method or system becomes an
acknowledged industry standard with acquiescence of the patent owner, any permissible
use generally requires payment of a reasonable royalty, which Google refused to do here.
[...]

